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Abstract. This paper presents the design of a novel distributed algo-
rithm d-IRA for the reachability analysis of linear hybrid automata. Re-
cent work on iterative relaxation abstraction (IRA) is leveraged to dis-
tribute the computational problem among multiple computational nodes
in a non-redundant manner by performing careful infeasibility analysis of
linear programs corresponding to spurious counterexamples. The d-IRA
algorithm is resistant to failure of multiple computational nodes. The ex-
perimental results provide promising evidence for the possible successful
application of this technique.

1 Introduction

The verification of hybrid systems is a computationally expensive proce-
dure and often does not succeed except for systems with a few continu-
ous variables. Linear hybrid automata are an important class of hybrid
systems which can approximate nonlinear hybrid systems in an asymp-
totically complete fashion [2]. We extend earlier work [3] on applying
counterexample guided abstraction refinement (CEGAR) algorithms to
the analysis of linear hybrid automata and present a distributed algo-
rithm for their reachability analysis.

We believe that a distributed analysis engine for hybrid automata will
be an important achievement in the area of analyzing hybrid systems.
There are two important developments that motivate our research in this
direction:

– While the computational power on a single core processor had tradi-
tionally been growing exponentially, recent trends cite [intel, amd]
by microprocessor manufacturers have clearly indicated that this
exponential growth is no longer feasible. This requires that compu-
tational systems adapt to the hardware systems that are going to be
available in the future. While efficient compiler and hardware tech-
niques were successful at finding parallelism in programs running on
a single core processor, the advent of multiple processors on a single
chip puts the burden of finding parallelism more on the designer of
the algorithm and the architect of the software system. In particular,
software systems and the algorithms they implement must explicitly
provide opportunities for multiple cores to be in use simultaneously.

http://arXiv.org/abs/0710.3764v1
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– Borrowing techniques from the domain of linear programming and
ideas from the realm of practically applied software verification, we
have recently proposed an iterative relaxation abstraction technique
which exploits the structure of a linear hybrid automata while try-
ing to solve its reachability analysis problem. The IRA algorithm
is based on solving several smaller sub-problems one after another
instead of solving the original problem at once. Further reflection
shows that several subproblems being constructed can be built and
solved in a distributed manner, with a relatively small amount of
book keeping and further algorithmic analysis.

This paper makes several novel contributions to the development of prac-
tical algorithms for the analysis of linear hybrid automata:

1. We present the first distributed algorithm for the analysis of linear
hybrid automata. Our algorithm is tolerant of multiple failures in the
distributed computational nodes.
2. We present new theoretical results establishing a partial-order among
counterexamples and relaxations of linear hybrid automata. Using these
results, we find several counterexamples not related by the partial order
and build relaxations to refute each of them in a distributed manner.
3. We show that the distributed system has a small global state which
needs to be preserved in case of failure of the distributed system; we also
identify the potential to backup this global state without slowing down
the distributed computation.

2 Related Work

The reachability analysis algorithms for linear hybrid automata have
been studied in [2]. . These algorithms continue to be the driving horse
for PHAVer [1], IRA [3] and our current techniques too. We have built
upon these core algorithms and did not intend to replace them.
Our current work is inspired by our development and analysis of several
LHA examples using the IRA algorithm, which is now re-implemented
within PHAVer. The IRA algorithm is essentially a CEGAR based tech-
nique for analyzing Linear Hybrid Automata (LHA). IRA introduces
the idea of constructing multiple relaxations of an LHA and proves the
reachability property over the original LHA using these relaxations. Each
relaxation of the LHA is an over-approximate abstraction for the LHA
but the relaxed LHA often involves relatively fewer number of contin-
uous variables and is, hence, more amenable to analysis. First, IRA [3]
constructs a relaxation Hi of the LHA H . It then queries the underlying
LHA reachability engine like PHAVer [1] and builds an over-approximate
discrete abstraction ( a regular language FSM ) Ai for the relaxed hybrid
automata Hi. If the language of the over-approximate discrete abstrac-
tion contains no counterexamples, the bad state is not reachable in the
original LHA either and the algorithm terminates. Otherwise, IRA picks
up a counterexample from the discrete abstraction and constructs a linear
program to check for its validity in the high dimensional original linear
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hybrid automata. If the linear program is satisfiable, the counterexam-
ple is valid [4] and hence, the IRA algorithm reports that the bad sate is
reachable and stops. Otherwise the linear program is infeasible, a small
subset of variables is identified using infeasibility analysis and a new re-
laxed hybrid automata Hi+1 is constructed using these variables. This
standard algorithm is discussed in [3].
Our experience with the development and analysis of examples using our
tool IRA showed that several expensive computations performed by the
IRA reachability engine can be performed independently in a distributed
manner.

3 The Distributed Algorithm (d-IRA)

In this paper, we present a distributed version of the IRA algorithm. The
flow of the algorithm is sketched in Fig. 1. The distributed algorithm
assumes one master computation node and (N-1) other computational
(slave) nodes. Initially, the master node initialises a counter i to zero,
chooses the empty set as an initial set of variables I0 and learns the
deterministic finite automata corresponding to Σ∗ as the initial discrete
over-approximate global abstraction of the language of the LHA H .
1. During the ith iteration, the jth computational node constructs its own
relaxation H

j
i of the linear hybrid automata H using the set of variables

I
j
i . It should be noted that the process of constructing relaxations may

also be computationally very intensive and may involve invoking the
Fourier-Motzkin elimination routine.
2. Each computational node then constructs a discrete abstraction Tempj

corresponding to the relaxed linear hybrid automata H
j
i . This step in-

volves making calls to the underlying reachability engine like PHAVer [1].
Both the above steps are identical to the corresponding steps in the IRA
algorithm [3] and are not discussed here for brevity.
3. Each computational node sends the discrete abstraction Tempj which
it learned from the relaxed linear hybrid automata H

j
i to the master com-

putational node. This is the only step at which there is communication
from the slave nodes to the master node during the d-IRA algorithm.
4. The master node updates the discrete global abstraction Ai+1

CE by taking
the intersection of the previous discrete global abstraction Ai

CE with all
the newly learned discrete abstractions Tempj.
5. Then, the master picks a set CE of N non-redundant counterexam-
ples from the newly built discrete global abstraction Ai+1

CE . This is an
algorithmically interesting step and is detailed in Section 4.
6. The master node checks if the set of counterexamples CE is empty.
If Ai+1

CE has no counterexamples, then no bad states are reachable in the
system [3] and hence, it is declared to be safe.
7. The master computational node forms a set of linear programs C,
where each linear program corresponds to one of the counterexamples
in CEi+1. This step is similar to the corresponding step in the IRA
algorithm [3] and is discussed in depth in [4].
8. The master node checks if any of the linear programs in C is feasible.
In any of them, say C, is feasible, we stop and report that the bad state
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Fig. 1. The d-IRA procedure: Distributed Iterative Relaxation Abstraction.
Note that the expensive calls to the underlying hybrid automata reachability
engine occurs in parallel.
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is reachable [4]. We also report the counterexample corresponding to the
linear program C.
9. If none of the linear program are feasible, the master node finds the
irreducible infeasible subsets for each of the linear programs.
10. The master node uses the basis of the IIS as the choice for the next
set of variables Ii+1 which will be used to construct the relaxations. The
master node communicates the set I

j
i+1 to the jth client. This is the only

step in the d-IRA algorithm during which the master sends messages to
the client nodes.
10. The master then increment the counter i and goes back to the dis-
tributed computation at Step 2.

4 A Partial Order for Counterexamples and
Relaxations

In order to make the distributed computation effective, it is essential that
the various computational nodes do not solve equivalent reachability sub-
problems. In particular, we want to make sure that the relaxed linear
hybrid automata for the ith iteration H

j
i and Hk

i are different1. We
achieve this goal by making a suitable choice of counterexamples from
the global abstraction Ai+1

CE . Before we present our algorithmic methods,
we define some related notions. Our definitions of linear hybrid automata,
relaxations and counterexamples are identical to those in literature [2,3]
and we do not repeat them here for sake of brevity. Given a path ρ in
a linear hybrid automata H , we can derive a set of corresponding linear
constraints Constraints(H,ρ) which is feasible if and only if the path is
feasible. This construction[4,3] is omitted here.

Definition 1. Minimal Explanation for Infeasible Counterexamples :
Given a counterexample path ρ which is infeasible in a linear hybrid au-
tomata H but feasible in a relaxation H ′ of H, (i.e. H ′ ⊑ H), a set of
linear constraints IIS(ρ) is said to be an IIS for ρ if and only if:

– IIS(ρ) ⊆ Constraints(H,ρ)
– IIS(ρ) is not feasible.
– for any set S s.t. S ⊂ IIS(ρ), S is feasible.

The special basis V ar of the IIS of ρ is called a minimal explanation for
the infeasible counterexample and we write it as V ar(ρ, IIS(ρ)).

In the following, we assume that there exists a function IIS which maps
each counterexample to a unique IIS.

Definition 2. Dominance of Counterexamples : A counterexample ce is
said to dominate a counterexample ce′ if and only if V ar(ce,IIS(ce)) ⊆
V ar(ce′, IIS(ce′)). We write ce�ce′.

We now define the notion of equivalent counterexamples and show that
dominance relation among counterexamples forms a partial order.

1 We note that the property of IRA that no two relaxations across the iterations are
identical still holds and with the same proof
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Definition 3. Two counterexamples ce and ce′ are said to be equivalent
if and only if V ar(ce, IIS(ce)) = V ar(ce′, IIS(ce′)). Then, we say ce ≈
ce′.

Theorem 1. The dominance relation � among counterexamples is a
partial order relation.

Proof. We prove that � is reflexive, antisymmetric and transitive:
Reflexivity : For every counterexample, V ar(ce, IIS(ce)) ⊆ V ar(ce,IIS(ce));
hence, ce � ce.
Antisymmetry : Suppose ce � ce′ and ce′ � ce. Then, V ar(ce,IIS(ce))
⊆ V ar(ce′, IIS(ce′)), and also, V ar(ce′, IIS(ce′)) ⊆ V ar(ce,IIS(ce)).
Thus, V ar(ce,IIS(ce)) = V ar(ce′, IIS(ce′)).Hence, ce ≈ ce′.
Transitivity : Suppose ce � ce′ and ce′ � ce′′, then V ar(ce, IIS(ce)) ⊆
V ar(ce′, IIS(ce′)) and V ar(ce′, IIS(ce′)) ⊆ V ar(ce′′, IIS(ce′′)). Thus,
V ar(ce, IIS(ce)) ⊆ V ar(ce′′, IIS(ce′′)). Hence, ce � ce′′.

Theorem 2. The relaxations {Hi} of H form a partial order.

Proof. We prove that the relaxation relation ⊑ among Hi is a partial
order. Reflexivity : For every relaxed hybrid automata, Hi ⊑ Hi. Anti-
symmetry : Suppose Hi ⊑ Hj and Hj ⊑ Hi. Then, Hi = Hj . Transitivity :
Suppose Hi ⊑ Hj and Hj ⊑ Hk, then Hi ⊑ Hk.

Theorem 3. Let Hce be the relaxation of H w.r.t. V ar(ce,IIS(ce)) and
Hce′ be the relaxation of H w.r.t. V ar(ce′, IIS(ce′)). If the counterex-
ample ce dominates the counterexample ce′ i.e. ce � ce′, then Hce is a
relaxation of Hce′ i.e. Hce ⊑ Hce′ .

Proof. Since ce � ce′, V ar(ce,IIS(ce)) ⊆ V ar(ce′, IIS(ce′)). Thus,
Hce ⊑V ar(ce,IIS(ce))\V ar(ce′,IIS(ce′)) Hce′ ⊑V ar(ce′,IIS(ce′)) H .

The algorithm for selecting N counterexamples is based on the above
results.

Algorithm Select CE
Input: Global Abstraction Automata Ai

CE, LHA H , a timer TIME-
OUT.
Output: N counterexamples: CE = {ce1, . . . ceN}

1. Initialize CE to be the empty set.
2. Pick a set of m (> N) distinct counterexamples C = {ce1, ce2 . . . cem}
from Ai

CE.
3. Build a set of linear programs {lp1, lp2 . . . lpm} corresponding to each
of {ce1, ce2 . . . cem}
4. For each (infeasible) linear program lpi, obtain an IIS and remember
it as IIS(lpi)
5. For each counterexample cei ∈ C,

a. Check whether there exists a counterexample cej ∈ C such that
cej � cei (i 6= j).

b. If no such counterexample cej exists, add cei to CE.
c. Remove cei from C.

6. If ( |CE| < N and !TIMEOUT ) , m = m × 2 ; goto step 2.
7. Assert (|CE| ≥ N or TIMEOUT ); RETURN the first N members
of CE as a set.
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5 Properties and Extensions of d-IRA

Theorem 4. The d-IRA algorithm is resistant to failures and restarts
of all slave nodes.

Proof. If the ith slave node fails during the jth iteration, then the d-IRA
algorithm can still proceed by making the assumption that L(Tempi) =
Σ∗. When the ith node has recovered, it can continue to participate from
the next iteration.

The resistance to failures of slave computational nodes is possible be-
cause the slave nodes do not store any global state information during
the distributed computation and the overall distributed reachability com-
putation itself does not depend critically on one or more slave nodes. It
is also to be noted that the communication bandwidth is bounded by
the sum of the sizes of the discrete abstractions and the variable sets at
each stage.

Tolerance to Failure of Master Computation Node The d-
IRA algorithm depends critically on the master computational node and
its failure would prematurely end the distributed computation. While
master nodes could be chosen to be very reliable, the algorithm can also
be adapted to handle unreliable master nodes.
It is to be observed that the d-IRA algorithm spends most of its time
performing relaxations and reachability computations during which the
communication infrastructure would remain idle. Further, the current
state of the distributed computation is really captured completely by
the global abstraction Ai

CE after the ith iteration. It is hence desirable to
communicate the global abstraction to either a group of shadow masters
or to the slave machines themselves during periods of low communication
activity. In such a scenario, the failure of the master node would only
require that an old copy of the global abstraction Ai

CE be obtained from
one of the shadow masters or the slave machines. Then, the distributed
computation would restart without wasting the computations already
completed in the first i iterations.

Theorem 5. The modified d−IRA algorithm is resistant to failures and
restarts of the master node.

6 Experimental Results and Conclusion

We implemented a version of our distributed algorithm using the IRA
infrastructure. We ran our experiments on a four processor 64-bit AMD
Opteron(tm) 844 SMP machine running Red Hat Linux version 2.6.19.1-
001-K8. We only implemented a parallel version of the relaxation step
to test the validity of these ideas. We found up to a 3.41-X increase in
performance on our four processor machine with this implementation on
a set of parameterized adaptive cruise control examples [3].
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Table 1. Distributed IRA vs IRA

Example ♯-Variables Time for d-IRA [s] Time for IRA [s]

ACC-4 4 11 15

ACC-8 8 100 192

ACC-16 16 1057 3839

ACC-19 19 2438 9752

A case for the architecture of a distributed hybrid systems model checker
has been made in this paper which uses the partial order relation among
multiple counterexamples obtained during the Iterative Relaxation Ab-
straction procedure for the generation of non-redundant distributed sub-
problems.
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Preface

This textbook is intended for use by students of physics, physical chemistry,
and theoretical chemistry. The reader is presumed to have a basic knowledge
of atomic and quantum physics at the level provided, for example, by the first
few chapters in our book The Physics of Atoms and Quanta. The student of
physics will find here material which should be included in the basic education
of every physicist. This book should furthermore allow students to acquire an
appreciation of the breadth and variety within the field of molecular physics and
its future as a fascinating area of research.

For the student of chemistry, the concepts introduced in this book will provide
a theoretical framework for that entire field of study. With the help of these con-
cepts, it is at least in principle possible to reduce the enormous body of empirical
chemical knowledge to a few basic principles: those of quantum mechanics. In
addition, modern physical methods whose fundamentals are introduced here are
becoming increasingly important in chemistry and now represent indispensable
tools for the chemist. As examples, we might mention the structural analysis of
complex organic compounds, spectroscopic investigation of very rapid reaction
processes or, as a practical application, the remote detection of pollutants in the
air.

April 1995 Walter Olthoff
Program Chair

ECOOP’95

http://arXiv.org/abs/0710.3764v1
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Program Chair: Walter Olthoff (DFKI GmbH, Germany)
Organizing Chair: Jørgen Lindskov Knudsen (Århus University,
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Abstract. The abstract should summarize the contents of the paper
using at least 70 and at most 150 words. It will be set in 9-point font
size and be inset 1.0 cm from the right and left margins. There will be
two blank lines before and after the Abstract. . . .

1 Fixed-Period Problems: The Sublinear Case

With this chapter, the preliminaries are over, and we begin the search for periodic
solutions to Hamiltonian systems. All this will be done in the convex case; that
is, we shall study the boundary-value problem

ẋ = JH ′(t, x)

x(0) = x(T )

with H(t, ·) a convex function of x, going to +∞ when ‖x‖ → ∞.

1.1 Autonomous Systems

In this section, we will consider the case when the Hamiltonian H(x) is au-
tonomous. For the sake of simplicity, we shall also assume that it is C1.

We shall first consider the question of nontriviality, within the general frame-
work of (A∞, B∞)-subquadratic Hamiltonians. In the second subsection, we shall
look into the special case when H is (0, b∞)-subquadratic, and we shall try to
derive additional information.

The General Case: Nontriviality. We assume that H is (A∞, B∞)-sub-
quadratic at infinity, for some constant symmetric matrices A∞ and B∞, with
B∞ −A∞ positive definite. Set:

γ : = smallest eigenvalue of B∞ −A∞ (1)

λ : = largest negative eigenvalue of J
d

dt
+A∞ . (2)
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Theorem ?? tells us that if λ+ γ < 0, the boundary-value problem:

ẋ = JH ′(x)
x(0) = x(T )

(3)

has at least one solution x, which is found by minimizing the dual action func-
tional:

ψ(u) =

∫ T

o

[
1

2

(
Λ−1

o u, u
)
+N∗(−u)

]
dt (4)

on the range of Λ, which is a subspace R(Λ)2L with finite codimension. Here

N(x) := H(x) −
1

2
(A∞x, x) (5)

is a convex function, and

N(x) ≤
1

2
((B∞ −A∞)x, x) + c ∀x . (6)

Proposition 1. Assume H ′(0) = 0 and H(0) = 0. Set:

δ := lim inf
x→0

2N(x) ‖x‖
−2

. (7)

If γ < −λ < δ, the solution u is non-zero:

x(t) 6= 0 ∀t . (8)

Proof. Condition (??) means that, for every δ′ > δ, there is some ε > 0 such
that

‖x‖ ≤ ε⇒ N(x) ≤
δ′

2
‖x‖2 . (9)

It is an exercise in convex analysis, into which we shall not go, to show that
this implies that there is an η > 0 such that

f ‖x‖ ≤ η ⇒ N∗(y) ≤
1

2δ′
‖y‖

2
. (10)

Fig. 1. This is the caption of the figure displaying a white eagle and a white horse on
a snow field
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Since u1 is a smooth function, we will have ‖hu1‖∞ ≤ η for h small enough,
and inequality (??) will hold, yielding thereby:

ψ(hu1) ≤
h2

2

1

λ
‖u1‖

2

2
+
h2

2

1

δ′
‖u1‖

2
. (11)

If we choose δ′ close enough to δ, the quantity
(

1

λ + 1

δ′

)
will be negative, and

we end up with
ψ(hu1) < 0 for h 6= 0 small . (12)

On the other hand, we check directly that ψ(0) = 0. This shows that 0 cannot
be a minimizer of ψ, not even a local one. So u 6= 0 and u 6= Λ−1

o (0) = 0. ⊓⊔

Corollary 1. Assume H is C2 and (a∞, b∞)-subquadratic at infinity. Let ξ1,
. . . , ξN be the equilibria, that is, the solutions of H ′(ξ) = 0. Denote by ωk the
smallest eigenvalue of H ′′ (ξk), and set:

ω := Min {ω1, . . . , ωk} . (13)

If:
T

2π
b∞ < −E

[
−
T

2π
a∞

]
<

T

2π
ω (14)

then minimization of ψ yields a non-constant T -periodic solution x.

We recall once more that by the integer part E[α] of α ∈ IR, we mean the
a ∈ ZZ such that a < α ≤ a + 1. For instance, if we take a∞ = 0, Corollary 2
tells us that x exists and is non-constant provided that:

T

2π
b∞ < 1 <

T

2π
(15)

or

T ∈

(
2π

ω
,
2π

b∞

)
. (16)

Proof. The spectrum of Λ is 2π
T ZZ + a∞. The largest negative eigenvalue λ is

given by 2π
T ko + a∞, where

2π

T
ko + a∞ < 0 ≤

2π

T
(ko + 1) + a∞ . (17)

Hence:

ko = E

[
−
T

2π
a∞

]
. (18)

The condition γ < −λ < δ now becomes:

b∞ − a∞ < −
2π

T
ko − a∞ < ω − a∞ (19)

which is precisely condition (??). ⊓⊔
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Lemma 1. Assume that H is C2 on IR2n\{0} and that H ′′(x) is non-degenerate
for any x 6= 0. Then any local minimizer x̃ of ψ has minimal period T .

Proof. We know that x̃, or x̃ + ξ for some constant ξ ∈ IR2n, is a T -periodic
solution of the Hamiltonian system:

ẋ = JH ′(x) . (20)

There is no loss of generality in taking ξ = 0. So ψ(x) ≥ ψ(x̃) for all x̃ in
some neighbourhood of x in W 1,2

(
IR/TZZ; IR2n

)
.

But this index is precisely the index iT (x̃) of the T -periodic solution x̃ over
the interval (0, T ), as defined in Sect. 2.6. So

iT (x̃) = 0 . (21)

Now if x̃ has a lower period, T/k say, we would have, by Corollary 31:

iT (x̃) = ikT/k(x̃) ≥ kiT/k(x̃) + k − 1 ≥ k − 1 ≥ 1 . (22)

This would contradict (??), and thus cannot happen. ⊓⊔

Notes and Comments. The results in this section are a refined version of [?]; the
minimality result of Proposition 14 was the first of its kind.

To understand the nontriviality conditions, such as the one in formula (??),
one may think of a one-parameter family xT , T ∈

(
2πω−1, 2πb−1

∞

)
of periodic

solutions, xT (0) = xT (T ), with xT going away to infinity when T → 2πω−1,
which is the period of the linearized system at 0.

Table 1. This is the example table taken out of The TEXbook, p. 246

Year World population

8000 B.C. 5,000,000
50 A.D. 200,000,000

1650 A.D. 500,000,000
1945 A.D. 2,300,000,000
1980 A.D. 4,400,000,000

Theorem 1 (Ghoussoub-Preiss). Assume H(t, x) is (0, ε)-subquadratic at
infinity for all ε > 0, and T -periodic in t

H(t, ·) is convex ∀t (23)

H(·, x) is T−periodic ∀x (24)

H(t, x) ≥ n (‖x‖) with n(s)s−1 → ∞ as s→ ∞ (25)
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∀ε > 0 , ∃c : H(t, x) ≤
ε

2
‖x‖

2
+ c . (26)

Assume also that H is C2, and H ′′(t, x) is positive definite everywhere. Then
there is a sequence xk, k ∈ IN, of kT -periodic solutions of the system

ẋ = JH ′(t, x) (27)

such that, for every k ∈ IN, there is some po ∈ IN with:

p ≥ po ⇒ xpk 6= xk . (28)

⊓⊔

Example 1 (External forcing). Consider the system:

ẋ = JH ′(x) + f(t) (29)

where the Hamiltonian H is (0, b∞)-subquadratic, and the forcing term is a
distribution on the circle:

f =
d

dt
F + fo with F ∈ L2

(
IR/TZZ; IR2n

)
, (30)

where fo := T−1
∫ T

o f(t)dt. For instance,

f(t) =
∑

k∈IN

δkξ , (31)

where δk is the Dirac mass at t = k and ξ ∈ IR2n is a constant, fits the pre-
scription. This means that the system ẋ = JH ′(x) is being excited by a series
of identical shocks at interval T .

Definition 1. Let A∞(t) and B∞(t) be symmetric operators in IR2n, depending
continuously on t ∈ [0, T ], such that A∞(t) ≤ B∞(t) for all t.

A Borelian function H : [0, T ] × IR2n → IR is called (A∞, B∞)-subquadratic
at infinity if there exists a function N(t, x) such that:

H(t, x) =
1

2
(A∞(t)x, x) +N(t, x) (32)

∀t , N(t, x) is convex with respect to x (33)

N(t, x) ≥ n (‖x‖) with n(s)s−1 → +∞ as s→ +∞ (34)

∃c ∈ IR : H(t, x) ≤
1

2
(B∞(t)x, x) + c ∀x . (35)

If A∞(t) = a∞I and B∞(t) = b∞I, with a∞ ≤ b∞ ∈ IR, we shall say that
H is (a∞, b∞)-subquadratic at infinity. As an example, the function ‖x‖

α
, with

1 ≤ α < 2, is (0, ε)-subquadratic at infinity for every ε > 0. Similarly, the
Hamiltonian

H(t, x) =
1

2
k ‖k‖2 + ‖x‖α (36)

is (k, k + ε)-subquadratic for every ε > 0. Note that, if k < 0, it is not convex.
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Notes and Comments. The first results on subharmonics were obtained by Ra-
binowitz in [?], who showed the existence of infinitely many subharmonics both
in the subquadratic and superquadratic case, with suitable growth conditions
on H ′. Again the duality approach enabled Clarke and Ekeland in [?] to treat
the same problem in the convex-subquadratic case, with growth conditions on
H only.

Recently, Michalek and Tarantello (see [?] and [?]) have obtained lower bound
on the number of subharmonics of period kT , based on symmetry considerations
and on pinching estimates, as in Sect. 5.2 of this article.
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1 Fixed-Period Problems: The Sublinear Case

With this chapter, the preliminaries are over, and we begin the search for periodic
solutions to Hamiltonian systems. All this will be done in the convex case; that
is, we shall study the boundary-value problem

ẋ = JH ′(t, x)

x(0) = x(T )

with H(t, ·) a convex function of x, going to +∞ when ‖x‖ → ∞.

1.1 Autonomous Systems

In this section, we will consider the case when the Hamiltonian H(x) is au-
tonomous. For the sake of simplicity, we shall also assume that it is C1.

We shall first consider the question of nontriviality, within the general frame-
work of (A∞, B∞)-subquadratic Hamiltonians. In the second subsection, we shall
look into the special case when H is (0, b∞)-subquadratic, and we shall try to
derive additional information.

The General Case: Nontriviality. We assume that H is (A∞, B∞)-sub-
quadratic at infinity, for some constant symmetric matrices A∞ and B∞, with
B∞ −A∞ positive definite. Set:

γ : = smallest eigenvalue of B∞ −A∞ (1)

λ : = largest negative eigenvalue of J
d

dt
+A∞ . (2)

Theorem 21 tells us that if λ+ γ < 0, the boundary-value problem:

ẋ = JH ′(x)
x(0) = x(T )

(3)
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has at least one solution x, which is found by minimizing the dual action func-
tional:

ψ(u) =

∫ T

o

[
1

2

(
Λ−1

o u, u
)
+N∗(−u)

]
dt (4)

on the range of Λ, which is a subspace R(Λ)2L with finite codimension. Here

N(x) := H(x) −
1

2
(A∞x, x) (5)

is a convex function, and

N(x) ≤
1

2
((B∞ −A∞)x, x) + c ∀x . (6)

Proposition 1. Assume H ′(0) = 0 and H(0) = 0. Set:

δ := lim inf
x→0

2N(x) ‖x‖
−2

. (7)

If γ < −λ < δ, the solution u is non-zero:

x(t) 6= 0 ∀t . (8)

Proof. Condition (??) means that, for every δ′ > δ, there is some ε > 0 such
that

‖x‖ ≤ ε⇒ N(x) ≤
δ′

2
‖x‖

2
. (9)

It is an exercise in convex analysis, into which we shall not go, to show that
this implies that there is an η > 0 such that

f ‖x‖ ≤ η ⇒ N∗(y) ≤
1

2δ′
‖y‖

2
. (10)

Fig. 1. This is the caption of the figure displaying a white eagle and a white horse on
a snow field

Since u1 is a smooth function, we will have ‖hu1‖∞ ≤ η for h small enough,
and inequality (??) will hold, yielding thereby:

ψ(hu1) ≤
h2

2

1

λ
‖u1‖

2

2
+
h2

2

1

δ′
‖u1‖

2
. (11)
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If we choose δ′ close enough to δ, the quantity
(

1

λ + 1

δ′

)
will be negative, and

we end up with

ψ(hu1) < 0 for h 6= 0 small . (12)

On the other hand, we check directly that ψ(0) = 0. This shows that 0 cannot
be a minimizer of ψ, not even a local one. So u 6= 0 and u 6= Λ−1

o (0) = 0. ⊓⊔

Corollary 1. Assume H is C2 and (a∞, b∞)-subquadratic at infinity. Let ξ1,
. . . , ξN be the equilibria, that is, the solutions of H ′(ξ) = 0. Denote by ωk the
smallest eigenvalue of H ′′ (ξk), and set:

ω := Min {ω1, . . . , ωk} . (13)

If:
T

2π
b∞ < −E

[
−
T

2π
a∞

]
<

T

2π
ω (14)

then minimization of ψ yields a non-constant T -periodic solution x.

We recall once more that by the integer part E[α] of α ∈ IR, we mean the
a ∈ ZZ such that a < α ≤ a + 1. For instance, if we take a∞ = 0, Corollary 2
tells us that x exists and is non-constant provided that:

T

2π
b∞ < 1 <

T

2π
(15)

or

T ∈

(
2π

ω
,
2π

b∞

)
. (16)

Proof. The spectrum of Λ is 2π
T ZZ + a∞. The largest negative eigenvalue λ is

given by 2π
T ko + a∞, where

2π

T
ko + a∞ < 0 ≤

2π

T
(ko + 1) + a∞ . (17)

Hence:

ko = E

[
−
T

2π
a∞

]
. (18)

The condition γ < −λ < δ now becomes:

b∞ − a∞ < −
2π

T
ko − a∞ < ω − a∞ (19)

which is precisely condition (??). ⊓⊔

Lemma 1. Assume that H is C2 on IR2n\{0} and that H ′′(x) is non-degenerate
for any x 6= 0. Then any local minimizer x̃ of ψ has minimal period T .
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Proof. We know that x̃, or x̃ + ξ for some constant ξ ∈ IR2n, is a T -periodic
solution of the Hamiltonian system:

ẋ = JH ′(x) . (20)

There is no loss of generality in taking ξ = 0. So ψ(x) ≥ ψ(x̃) for all x̃ in
some neighbourhood of x in W 1,2

(
IR/TZZ; IR2n

)
.

But this index is precisely the index iT (x̃) of the T -periodic solution x̃ over
the interval (0, T ), as defined in Sect. 2.6. So

iT (x̃) = 0 . (21)

Now if x̃ has a lower period, T/k say, we would have, by Corollary 31:

iT (x̃) = ikT/k(x̃) ≥ kiT/k(x̃) + k − 1 ≥ k − 1 ≥ 1 . (22)

This would contradict (??), and thus cannot happen. ⊓⊔

Notes and Comments. The results in this section are a refined version of ?; the
minimality result of Proposition 14 was the first of its kind.

To understand the nontriviality conditions, such as the one in formula (??),
one may think of a one-parameter family xT , T ∈

(
2πω−1, 2πb−1

∞

)
of periodic

solutions, xT (0) = xT (T ), with xT going away to infinity when T → 2πω−1,
which is the period of the linearized system at 0.

Table 1. This is the example table taken out of The TEXbook, p. 246

Year World population

8000 B.C. 5,000,000
50 A.D. 200,000,000

1650 A.D. 500,000,000
1945 A.D. 2,300,000,000
1980 A.D. 4,400,000,000

Theorem 1 (Ghoussoub-Preiss). Assume H(t, x) is (0, ε)-subquadratic at
infinity for all ε > 0, and T -periodic in t

H(t, ·) is convex ∀t (23)

H(·, x) is T−periodic ∀x (24)

H(t, x) ≥ n (‖x‖) with n(s)s−1 → ∞ as s→ ∞ (25)

∀ε > 0 , ∃c : H(t, x) ≤
ε

2
‖x‖

2
+ c . (26)
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Assume also that H is C2, and H ′′(t, x) is positive definite everywhere. Then
there is a sequence xk, k ∈ IN, of kT -periodic solutions of the system

ẋ = JH ′(t, x) (27)

such that, for every k ∈ IN, there is some po ∈ IN with:

p ≥ po ⇒ xpk 6= xk . (28)

⊓⊔

Example 1 (External forcing). Consider the system:

ẋ = JH ′(x) + f(t) (29)

where the Hamiltonian H is (0, b∞)-subquadratic, and the forcing term is a
distribution on the circle:

f =
d

dt
F + fo with F ∈ L2

(
IR/TZZ; IR2n

)
, (30)

where fo := T−1
∫ T

o
f(t)dt. For instance,

f(t) =
∑

k∈IN

δkξ , (31)

where δk is the Dirac mass at t = k and ξ ∈ IR2n is a constant, fits the pre-
scription. This means that the system ẋ = JH ′(x) is being excited by a series
of identical shocks at interval T .

Definition 1. Let A∞(t) and B∞(t) be symmetric operators in IR2n, depending
continuously on t ∈ [0, T ], such that A∞(t) ≤ B∞(t) for all t.

A Borelian function H : [0, T ] × IR2n → IR is called (A∞, B∞)-subquadratic
at infinity if there exists a function N(t, x) such that:

H(t, x) =
1

2
(A∞(t)x, x) +N(t, x) (32)

∀t , N(t, x) is convex with respect to x (33)

N(t, x) ≥ n (‖x‖) with n(s)s−1 → +∞ as s→ +∞ (34)

∃c ∈ IR : H(t, x) ≤
1

2
(B∞(t)x, x) + c ∀x . (35)

If A∞(t) = a∞I and B∞(t) = b∞I, with a∞ ≤ b∞ ∈ IR, we shall say that
H is (a∞, b∞)-subquadratic at infinity. As an example, the function ‖x‖

α
, with

1 ≤ α < 2, is (0, ε)-subquadratic at infinity for every ε > 0. Similarly, the
Hamiltonian

H(t, x) =
1

2
k ‖k‖

2
+ ‖x‖

α
(36)

is (k, k + ε)-subquadratic for every ε > 0. Note that, if k < 0, it is not convex.
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Notes and Comments. The first results on subharmonics were obtained by Ra-
binowitz in ?, who showed the existence of infinitely many subharmonics both
in the subquadratic and superquadratic case, with suitable growth conditions
on H ′. Again the duality approach enabled Clarke and Ekeland in ? to treat
the same problem in the convex-subquadratic case, with growth conditions on
H only.

Recently, Michalek and Tarantello (see Michalek, R., Tarantello, G. ? and
Tarantello, G. ?) have obtained lower bound on the number of subharmonics of
period kT , based on symmetry considerations and on pinching estimates, as in
Sect. 5.2 of this article.
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Büngener L. 13
Bürger J. 11
Büsser F.W. 13
Buniatian A. 11,37
Buschhorn G. 25

Campbell A.J. 1
Carli T. 25
Charles F. 28
Clarke D. 5
Clegg A.B. 18
Colombo M. 8
Courau A. 26
Coutures Ch. 9

Cozzika G. 9
Criegee L. 11
Cvach J. 27

Dagoret S. 28
Dainton J.B. 19
Dann A.W.E. 22
Dau W.D. 16
Deffur E. 11
Delcourt B. 26
Buono Del A. 28
Devel M. 26
De Roeck A. 11
Dingus P. 27
Dollfus C. 35
Dreis H.B. 2
Drescher A. 8
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Rädel G. 11
Raupach F. 1
Rauschnabel K. 8
Reinshagen S. 11
Ribarics P. 25
Riech V. 12
Riedlberger J. 34
Rietz M. 2
Robertson S.M. 3
Robmann P. 35
Roosen R. 4
Royon C. 9
Rudowicz M. 25
Rusakov S. 24
Rybicki K. 6

Sahlmann N. 2
Sanchez E. 25
Savitsky M. 11
Schacht P. 25
Schleper P. 14
von Schlippe W. 20
Schmidt D. 32
Schmitz W. 2
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